Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J C Part Fields ; 77(11): 785, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-31997932

RESUMO

This paper reports on the development of a technology involving 100 Mo -enriched scintillating bolometers, compatible with the goals of CUPID, a proposed next-generation bolometric experiment to search for neutrinoless double-beta decay. Large mass ( ∼ 1 kg ), high optical quality, radiopure 100 Mo -containing zinc and lithium molybdate crystals have been produced and used to develop high performance single detector modules based on 0.2-0.4 kg scintillating bolometers. In particular, the energy resolution of the lithium molybdate detectors near the Q-value of the double-beta transition of 100 Mo (3034 keV) is 4-6 keV FWHM. The rejection of the α -induced dominant background above 2.6 MeV is better than 8 σ . Less than 10 µ Bq/kg activity of 232 Th ( 228 Th ) and 226 Ra in the crystals is ensured by boule recrystallization. The potential of 100 Mo -enriched scintillating bolometers to perform high sensitivity double-beta decay searches has been demonstrated with only 10 kg × d exposure: the two neutrino double-beta decay half-life of 100 Mo has been measured with the up-to-date highest accuracy as T 1 / 2 = [6.90 ± 0.15(stat.) ± 0.37(syst.)] × 10 18 years . Both crystallization and detector technologies favor lithium molybdate, which has been selected for the ongoing construction of the CUPID-0/Mo demonstrator, containing several kg of 100 Mo .

2.
Phys Chem Chem Phys ; 16(45): 24884-91, 2014 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-25322208

RESUMO

Ba5(BO3)3F single crystals of high optical quality and up to 1.5 cm in diameter were grown. Its transparency range is 0.23 to 6.6 µm (on 10% level). Direct allowed electronic transitions at the Γ-point give band gap values of 5.31 and 5.40 eV at 300 and 80 K, respectively. Luminescence is excited in the near-edge absorption bands near 265 and 365 nm. X-ray irradiation induces an additional absorption in dominant 252, 317 and 710 nm bands. Combined electron spin-resonance spectroscopy and theoretical analysis allow one to associate the three absorption peaks with O(5-), O(1-) and e6(-) (fluorine vacancy), respectively. The original transparency is restored after heating the crystal to 400 K and charge carrier release from traps with ET = 0.87 eV and s = 10(12) s(-1). Dispersion curves for the refractive indices were calculated and Sellmeier equations were built. Theoretical analysis shows strong localization of the Ba 5s and F 2s orbitals, strong ionicity of the Ba cations and strong covalency of the B-O bond. The optical properties of Ba5(BO3)3F are dominantly determined by electron transitions within the (BO3)(3-) groups, despite the transition between barium and oxygen also having a little contribution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...